package pixel import ( "fmt" "math" "math/cmplx" "github.com/go-gl/mathgl/mgl64" ) // Vec is a 2D vector type. It is unusually implemented as complex128 for convenience. Since // Go does not allow operator overloading, implementing vector as a struct leads to a bunch of // methods for addition, subtraction and multiplication of vectors. With complex128, much of // this functionality is given through operators. // // Create vectors with the V constructor: // // u := pixel.V(1, 2) // v := pixel.V(8, -3) // // Add and subtract them using the standard + and - operators: // // w := u + v // fmt.Println(w) // Vec(9, -1) // fmt.Println(u - v) // Vec(-7, 5) // // Additional standard vector operations can be obtained with methods: // // u := pixel.V(2, 3) // v := pixel.V(8, 1) // if u.X() < 0 { // fmt.Println("this won't happen") // } // x := u.Unit().Dot(v.Unit()) type Vec complex128 // V returns a new 2D vector with the given coordinates. func V(x, y float64) Vec { return Vec(complex(x, y)) } // X returns a 2D vector with coordinates (x, 0). func X(x float64) Vec { return V(x, 0) } // Y returns a 2D vector with coordinates (0, y). func Y(y float64) Vec { return V(0, y) } // String returns the string representation of the vector u. // // u := pixel.V(4.5, -1.3) // u.String() // returns "Vec(4.5, -1.3)" // fmt.Println(u) // Vec(4.5, -1.3) func (u Vec) String() string { return fmt.Sprintf("Vec(%v, %v)", u.X(), u.Y()) } // X returns the x coordinate of the vector u. func (u Vec) X() float64 { return real(u) } // Y returns the y coordinate of the vector u. func (u Vec) Y() float64 { return imag(u) } // XY returns the components of the vector in two return values. func (u Vec) XY() (x, y float64) { return real(u), imag(u) } // Len returns the length of the vector u. func (u Vec) Len() float64 { return cmplx.Abs(complex128(u)) } // Angle returns the angle between the vector u and the x-axis. The result is in range [-Pi, Pi]. func (u Vec) Angle() float64 { return cmplx.Phase(complex128(u)) } // Unit returns a vector of length 1 facing the direction of u (has the same angle). func (u Vec) Unit() Vec { if u == 0 { return 1 } return u / V(u.Len(), 0) } // Scaled returns the vector u multiplied by c. func (u Vec) Scaled(c float64) Vec { return u * V(c, 0) } // ScaledXY returns the vector u multiplied by the vector v component-wise. func (u Vec) ScaledXY(v Vec) Vec { return V(u.X()*v.X(), u.Y()*v.Y()) } // Rotated returns the vector u rotated by the given angle in radians. func (u Vec) Rotated(angle float64) Vec { sin, cos := math.Sincos(angle) return u * V(cos, sin) } // WithX return the vector u with the x coordinate changed to the given value. func (u Vec) WithX(x float64) Vec { return V(x, u.Y()) } // WithY returns the vector u with the y coordinate changed to the given value. func (u Vec) WithY(y float64) Vec { return V(u.X(), y) } // Dot returns the dot product of vectors u and v. func (u Vec) Dot(v Vec) float64 { return u.X()*v.X() + u.Y()*v.Y() } // Cross return the cross product of vectors u and v. func (u Vec) Cross(v Vec) float64 { return u.X()*v.Y() - v.X()*u.Y() } // Map applies the function f to both x and y components of the vector u and returns the modified // vector. // // u := pixel.V(10.5, -1.5) // v := u.Map(math.Floor) // v is Vec(10, -2), both components of u floored func (u Vec) Map(f func(float64) float64) Vec { return V( f(u.X()), f(u.Y()), ) } // Lerp returns a linear interpolation between vectors a and b. // // This function basically returns a point along the line between a and b and t chooses which one. // If t is 0, then a will be returned, if t is 1, b will be returned. Anything between 0 and 1 will // return the appropriate point between a and b and so on. func Lerp(a, b Vec, t float64) Vec { return a.Scaled(1-t) + b.Scaled(t) } // Rect is a 2D rectangle aligned with the axes of the coordinate system. It is defined by two // points, Min and Max. // // The invariant should hold, that Max's components are greater or equal than Min's components // respectively. type Rect struct { Min, Max Vec } // R returns a new Rect with given the Min and Max coordinates. func R(minX, minY, maxX, maxY float64) Rect { return Rect{ Min: V(minX, minY), Max: V(maxX, maxY), } } // String returns the string representation of the Rect. // // r := pixel.R(100, 50, 200, 300) // r.String() // returns "Rect(100, 50, 200, 300)" // fmt.Println(r) // Rect(100, 50, 200, 300) func (r Rect) String() string { return fmt.Sprintf("Rect(%v, %v, %v, %v)", r.Min.X(), r.Min.Y(), r.Max.X(), r.Max.Y()) } // Norm returns the Rect in normal form, such that Max is component-wise greater or equal than Min. func (r Rect) Norm() Rect { return Rect{ Min: V( math.Min(r.Min.X(), r.Max.X()), math.Min(r.Min.Y(), r.Max.Y()), ), Max: V( math.Max(r.Min.X(), r.Max.X()), math.Max(r.Min.Y(), r.Max.Y()), ), } } // W returns the width of the Rect. func (r Rect) W() float64 { return r.Max.X() - r.Min.X() } // H returns the height of the Rect. func (r Rect) H() float64 { return r.Max.Y() - r.Min.Y() } // Size returns the vector of width and height of the Rect. func (r Rect) Size() Vec { return V(r.W(), r.H()) } // Center returns the position of the center of the Rect. func (r Rect) Center() Vec { return (r.Min + r.Max) / 2 } // Moved returns the Rect moved (both Min and Max) by the given vector delta. func (r Rect) Moved(delta Vec) Rect { return Rect{ Min: r.Min + delta, Max: r.Max + delta, } } // WithMin returns the Rect with it's Min changed to the given position. // // Note, that the Rect is not automatically normalized. func (r Rect) WithMin(min Vec) Rect { return Rect{ Min: min, Max: r.Max, } } // WithMax returns the Rect with it's Max changed to the given position. // // Note, that the Rect is not automatically normalized. func (r Rect) WithMax(max Vec) Rect { return Rect{ Min: r.Min, Max: max, } } // Resized returns the Rect resized to the given size while keeping the position of the given // anchor. // // r.Resized(r.Min, size) // resizes while keeping the position of the lower-left corner // r.Resized(r.Max, size) // same with the top-right corner // r.Resized(r.Center(), size) // resizes around the center // // This function does not make sense for sizes of zero area and will panic. Use ResizedMin in the // case of zero area. func (r Rect) Resized(anchor, size Vec) Rect { if r.W()*r.H() == 0 || size.X()*size.Y() == 0 { panic(fmt.Errorf("(%T).Resize: zero area", r)) } fraction := V(size.X()/r.W(), size.Y()/r.H()) return Rect{ Min: anchor + (r.Min - anchor).ScaledXY(fraction), Max: anchor + (r.Max - anchor).ScaledXY(fraction), } } // ResizedMin returns the Rect resized to the given size while keeping the position of the Rect's // Min. // // Sizes of zero area are safe here. func (r Rect) ResizedMin(size Vec) Rect { return Rect{ Min: r.Min, Max: r.Min + size, } } // Contains checks whether a vector u is contained within this Rect (including it's borders). func (r Rect) Contains(u Vec) bool { return r.Min.X() <= u.X() && u.X() <= r.Max.X() && r.Min.Y() <= u.Y() && u.Y() <= r.Max.Y() } // Matrix is a 3x3 transformation matrix that can be used for all kinds of spacial transforms, such // as movement, scaling and rotations. // // Matrix has a handful of useful methods, each of which adds a transformation to the matrix. For // example: // // pixel.IM.Moved(pixel.V(100, 200)).Rotated(0, math.Pi/2) // // This code creates a Matrix that first moves everything by 100 units horizontally and 200 units // vertically and then rotates everything by 90 degrees around the origin. type Matrix [9]float64 // IM stands for identity matrix. Does nothing, no transformation. var IM = Matrix(mgl64.Ident3()) // String returns a string representation of the Matrix. // // m := pixel.IM // fmt.Println(m) // Matrix(1 0 0 | 0 1 0 | 0 0 1) func (m Matrix) String() string { return fmt.Sprintf( "Matrix(%v %v %v | %v %v %v | %v %v %v)", m[0], m[3], m[6], m[1], m[4], m[7], m[2], m[5], m[8], ) } // Moved moves everything by the delta vector. func (m Matrix) Moved(delta Vec) Matrix { m3 := mgl64.Mat3(m) m3 = mgl64.Translate2D(delta.XY()).Mul3(m3) return Matrix(m3) } // ScaledXY scales everything around a given point by the scale factor in each axis respectively. func (m Matrix) ScaledXY(around Vec, scale Vec) Matrix { m3 := mgl64.Mat3(m) m3 = mgl64.Translate2D((-around).XY()).Mul3(m3) m3 = mgl64.Scale2D(scale.XY()).Mul3(m3) m3 = mgl64.Translate2D(around.XY()).Mul3(m3) return Matrix(m3) } // Scaled scales everything around a given point by the scale factor. func (m Matrix) Scaled(around Vec, scale float64) Matrix { return m.ScaledXY(around, V(scale, scale)) } // Rotated rotates everything around a given point by the given angle in radians. func (m Matrix) Rotated(around Vec, angle float64) Matrix { m3 := mgl64.Mat3(m) m3 = mgl64.Translate2D((-around).XY()).Mul3(m3) m3 = mgl64.Rotate3DZ(angle).Mul3(m3) m3 = mgl64.Translate2D(around.XY()).Mul3(m3) return Matrix(m3) } // Chained adds another Matrix to this one. All tranformations by the next Matrix will be applied // after the transformations of this Matrix. func (m Matrix) Chained(next Matrix) Matrix { m3 := mgl64.Mat3(m) m3 = mgl64.Mat3(next).Mul3(m3) return Matrix(m3) } // Project applies all transformations added to the Matrix to a vector u and returns the result. // // Time complexity is O(1). func (m Matrix) Project(u Vec) Vec { m3 := mgl64.Mat3(m) proj := m3.Mul3x1(mgl64.Vec3{u.X(), u.Y(), 1}) return V(proj.X(), proj.Y()) } // Unproject does the inverse operation to Project. // // Time complexity is O(1). func (m Matrix) Unproject(u Vec) Vec { m3 := mgl64.Mat3(m) inv := m3.Inv() unproj := inv.Mul3x1(mgl64.Vec3{u.X(), u.Y(), 1}) return V(unproj.X(), unproj.Y()) }