package pixel import ( "fmt" "math" "math/cmplx" ) // Vec is a 2D vector type. It is unusually implemented as complex128 for convenience. Since // Go does not allow operator overloading, implementing vector as a struct leads to a bunch of // methods for addition, subtraction and multiplication of vectors. With complex128, much of // this functionality is given through operators. // // Create vectors with the V constructor: // // u := pixel.V(1, 2) // v := pixel.V(8, -3) // // Add and subtract them using the standard + and - operators: // // w := u + v // fmt.Println(w) // Vec(9, -1) // fmt.Println(u - v) // Vec(-7, 5) // // Additional standard vector operations can be obtained with methods: // // u := pixel.V(2, 3) // v := pixel.V(8, 1) // if u.X() < 0 { // fmt.Println("this won't happen") // } // x := u.Unit().Dot(v.Unit()) type Vec complex128 // V returns a new 2d vector with the given coordinates. func V(x, y float64) Vec { return Vec(complex(x, y)) } // String returns the string representation of the vector u. // // u := pixel.V(4.5, -1.3) // u.String() // returns "Vec(4.5, -1.3)" // fmt.Println(u) // Vec(4.5, -1.3) func (u Vec) String() string { return fmt.Sprintf("Vec(%v, %v)", u.X(), u.Y()) } // X returns the x coordinate of the vector u. func (u Vec) X() float64 { return real(u) } // Y returns the y coordinate of the vector u. func (u Vec) Y() float64 { return imag(u) } // XY returns the components of the vector in two return values. func (u Vec) XY() (x, y float64) { return real(u), imag(u) } // Len returns the length of the vector u. func (u Vec) Len() float64 { return cmplx.Abs(complex128(u)) } // Angle returns the angle between the vector u and the x-axis. The result is in the range [-Pi, Pi]. func (u Vec) Angle() float64 { return cmplx.Phase(complex128(u)) } // Unit returns a vector of length 1 with the same angle as u. func (u Vec) Unit() Vec { return u / V(u.Len(), 0) } // Scaled returns the vector u multiplied by c. func (u Vec) Scaled(c float64) Vec { return u * V(c, 0) } // Rotated returns the vector u rotated by the given angle in radians. func (u Vec) Rotated(angle float64) Vec { sin, cos := math.Sincos(angle) return u * V(cos, sin) } // Dot returns the dot product of vectors u and v. func (u Vec) Dot(v Vec) float64 { return u.X()*v.X() + u.Y()*v.Y() } // Cross return the cross product of vectors u and v. func (u Vec) Cross(v Vec) float64 { return u.X()*v.Y() - v.X()*u.Y() } // Apply applies the function f to both x and y components of the vector u and returns the modified // vector. func (u Vec) Apply(f func(float64) float64) Vec { return V( f(u.X()), f(u.Y()), ) } // Rect is a 2D rectangle aligned with the axes of the coordinate system. It has a position // and a size. // // You can manipulate the position and the size using the usual vector operations. type Rect struct { Pos, Size Vec } // R returns a new Rect with given position (x, y) and size (w, h). func R(x, y, w, h float64) Rect { return Rect{ Pos: V(x, y), Size: V(w, h), } } // String returns the string representation of the rectangle. // // r := pixel.R(100, 50, 200, 300) // r.String() // returns "Rect(100, 50, 200, 300)" // fmt.Println(r) // Rect(100, 50, 200, 300) func (r Rect) String() string { return fmt.Sprintf("Rect(%v, %v, %v, %v)", r.X(), r.Y(), r.W(), r.H()) } // X returns the x coordinate of the position of the rectangle. func (r Rect) X() float64 { return r.Pos.X() } // Y returns the y coordinate of the position of the rectangle func (r Rect) Y() float64 { return r.Pos.Y() } // W returns the width of the rectangle. func (r Rect) W() float64 { return r.Size.X() } // H returns the height of the rectangle. func (r Rect) H() float64 { return r.Size.Y() } // XYWH returns all of the four components of the rectangle in four return values. func (r Rect) XYWH() (x, y, w, h float64) { return r.X(), r.Y(), r.W(), r.H() } // Center returns the position of the center of the rectangle. func (r Rect) Center() Vec { return r.Pos + r.Size.Scaled(0.5) } // Contains checks whether a vector u is contained within this Rect (including it's borders). func (r Rect) Contains(u Vec) bool { min, max := r.Pos, r.Pos+r.Size return min.X() <= u.X() && u.X() <= max.X() && min.Y() <= u.Y() && u.Y() <= max.Y() }