package pixel import ( "fmt" "math" "math/cmplx" ) // Vec is a 2d vector type. It is unusually implemented as complex128 for convenience. Since Go does // not allow operator overloading, implementing vector as a struct leads to a bunch of methods for // addition, subtraction and multiplication of vectors. With complex128, much of this functionality // is given through operators. // // Create vectors with the V constructor: // // u := pixel.V(1, 2) // v := pixel.V(8, -3) // // Add and subtract them using the standard + and - operators: // // w := u + v // fmt.Println(w) // Vec(9, -1) // fmt.Println(u - v) // Vec(-7, 5) // // Additional standard vector operations can be obtained with methods: // // u := pixel.V(2, 3) // v := pixel.V(8, 1) // if u.X() < 0 { // fmt.Println("this won't happen") // } // x := u.Unit().Dot(v.Unit()) type Vec complex128 // V returns a new 2d vector with the given coordinates. func V(x, y float64) Vec { return Vec(complex(x, y)) } // String returns the string representation of a vector u. // // u := pixel.V(4.5, -1.3) // u.String() // returns "Vec(4.5, -1.3)" // fmt.Println(u) // Vec(4.5, -1.3) func (u Vec) String() string { return fmt.Sprintf("Vec(%v, %v)", u.X(), u.Y()) } // X returns the x coordinate of a vector u. func (u Vec) X() float64 { return real(u) } // Y returns the y coordinate of a vector u. func (u Vec) Y() float64 { return imag(u) } // XY returns the components of a vector in two return values. func (u Vec) XY() (x, y float64) { return real(u), imag(u) } // Len returns the length of a vector u. func (u Vec) Len() float64 { return cmplx.Abs(complex128(u)) } // Angle returns the angle between a vector u and the x-axis. The result is in the range [-Pi, Pi]. func (u Vec) Angle() float64 { return cmplx.Phase(complex128(u)) } // Unit returns a vector of length 1 with the same angle as u. func (u Vec) Unit() Vec { return u / V(u.Len(), 0) } // Scaled returns a vector u multiplied by c. func (u Vec) Scaled(c float64) Vec { return u * V(c, 0) } // Rotated returns a vector u rotated by the given angle in radians. func (u Vec) Rotated(angle float64) Vec { sin, cos := math.Sincos(angle) return u * V(cos, sin) } // Dot returns the dot product of vectors u and v. func (u Vec) Dot(v Vec) float64 { return u.X()*v.X() + u.Y()*v.Y() } // Cross return the cross product of vectors u and v. func (u Vec) Cross(v Vec) float64 { return u.X()*v.Y() - v.X()*u.Y() }