Newer
Older
"github.com/faiface/mainthread"
"github.com/faiface/pixel"
"github.com/go-gl/mathgl/mgl32"
"github.com/pkg/errors"
)
// Canvas is an off-screen rectangular BasicTarget and Picture at the same time, that you can draw
// onto.
// It supports TrianglesPosition, TrianglesColor, TrianglesPicture and PictureColor.
// these should **only** be accessed through orig
f *glhf.Frame
borders pixel.Rect
pixels []uint8
dirty bool
// these should **never** be accessed through orig
s *glhf.Shader
bounds pixel.Rect
mat mgl32.Mat3
col mgl32.Vec4
// NewCanvas creates a new empty, fully transparent Canvas with given bounds. If the smooth flag is
// set, then stretched Pictures will be smoothed and will not be drawn pixely onto this Canvas.
func NewCanvas(bounds pixel.Rect, smooth bool) *Canvas {
c := &Canvas{
smooth: smooth,
mat: mgl32.Ident3(),
col: mgl32.Vec4{1, 1, 1, 1},
}
mainthread.Call(func() {
var err error
canvasVertexFormat,
canvasUniformFormat,
canvasVertexShader,
canvasFragmentShader,
)
if err != nil {
panic(errors.Wrap(err, "failed to create Canvas, there's a bug in the shader"))
// MakeTriangles creates a specialized copy of the supplied Triangles that draws onto this Canvas.
//
// TrianglesPosition, TrianglesColor and TrianglesPicture are supported.
func (c *Canvas) MakeTriangles(t pixel.Triangles) pixel.TargetTriangles {
return &canvasTriangles{
GLTriangles: NewGLTriangles(c.s, t),
// MakePicture create a specialized copy of the supplied Picture that draws onto this Canvas.
//
// PictureColor is supported.
func (c *Canvas) MakePicture(p pixel.Picture) pixel.TargetPicture {
if ccp, ok := p.(*canvasCanvasPicture); ok {
tp := new(canvasCanvasPicture)
*tp = *ccp
tp.dst = c
return tp
}
if canvas, ok := p.(*Canvas); ok {
return &canvasCanvasPicture{
src: canvas,
dst: c,
bounds: c.bounds,
}
}
if pd, ok := p.(*pixel.PictureData); ok {
// PictureData short path
for y := 0; y < bh; y++ {
for x := 0; x < bw; x++ {
nrgba := pd.Pix[y*pd.Stride+x]
off := (y*bw + x) * 4
pixels[off+0] = nrgba.R
pixels[off+1] = nrgba.G
pixels[off+2] = nrgba.B
pixels[off+3] = nrgba.A
}
}
} else if p, ok := p.(pixel.PictureColor); ok {
for y := 0; y < bh; y++ {
for x := 0; x < bw; x++ {
at := pixel.V(
math.Max(float64(bx+x), bounds.Min.X()),
math.Max(float64(by+y), bounds.Min.Y()),
off := (y*bw + x) * 4
pixels[off+0] = uint8(color.R * 255)
pixels[off+1] = uint8(color.G * 255)
pixels[off+2] = uint8(color.B * 255)
pixels[off+3] = uint8(color.A * 255)
var tex *glhf.Texture
mainthread.Call(func() {
tex = glhf.NewTexture(bw, bh, c.smooth, pixels)
tex: tex,
pixels: pixels,
borders: pixel.R(
float64(bx), float64(by),
float64(bw), float64(bh),
),
// SetMatrix sets a Matrix that every point will be projected by.
func (c *Canvas) SetMatrix(m pixel.Matrix) {
for i := range m {
c.mat[i] = float32(m[i])
}
// SetColorMask sets a color that every color in triangles or a picture will be multiplied by.
func (c *Canvas) SetColorMask(col color.Color) {
nrgba := pixel.NRGBA{R: 1, G: 1, B: 1, A: 1}
if col != nil {
nrgba = pixel.NRGBAModel.Convert(col).(pixel.NRGBA)
}
c.col = mgl32.Vec4{
float32(nrgba.R),
float32(nrgba.G),
float32(nrgba.B),
float32(nrgba.A),
}
// SetBounds resizes the Canvas to the new bounds. Old content will be preserved.
// If the new Bounds fit into the Original borders, no new Canvas will be allocated.
func (c *Canvas) SetBounds(bounds pixel.Rect) {
c.bounds = bounds
// if this bounds fit into the original bounds, no need to reallocate
if c.orig.borders.Contains(bounds.Min) && c.orig.borders.Contains(bounds.Max) {
return
}
mainthread.Call(func() {
c.f = glhf.NewFrame(w, h, c.smooth)
// preserve old content
if oldF != nil {
relBounds = relBounds.Moved(-c.orig.borders.Min)
oldF.Blit(
c.f,
ox, oy, ox+ow, oy+oh,
ox, oy, ox+ow, oy+oh,
)
}
})
// Bounds returns the rectangular bounds of the Canvas.
func (c *Canvas) Bounds() pixel.Rect {
return c.bounds
// SetSmooth sets whether stretched Pictures drawn onto this Canvas should be drawn smooth or
// pixely.
func (c *Canvas) SetSmooth(smooth bool) {
c.smooth = smooth
// Smooth returns whether stretched Pictures drawn onto this Canvas are set to be drawn smooth or
// pixely.
func (c *Canvas) Smooth() bool {
return c.smooth
// must be manually called inside mainthread
func (c *Canvas) setGlhfBounds() {
bounds := c.bounds
bounds.Moved(c.orig.borders.Min)
bx, by, bw, bh := intBounds(bounds)
glhf.Bounds(bx, by, bw, bh)
}
// Clear fills the whole Canvas with a single color.
func (c *Canvas) Clear(color color.Color) {
nrgba := pixel.NRGBAModel.Convert(color).(pixel.NRGBA)
// color masking
nrgba = nrgba.Mul(pixel.NRGBA{
R: float64(c.col[0]),
G: float64(c.col[1]),
B: float64(c.col[2]),
A: float64(c.col[3]),
})
glhf.Clear(
float32(nrgba.R),
float32(nrgba.G),
float32(nrgba.B),
float32(nrgba.A),
)
// Slice returns a sub-Canvas with the specified Bounds.
//
// The type of the returned value is *Canvas, the type of the return value is a general
// pixel.Picture just so that Canvas implements pixel.Picture interface.
func (c *Canvas) Slice(bounds pixel.Rect) pixel.Picture {
sc := new(Canvas)
*sc = *c
sc.bounds = bounds
return sc
}
// Original returns the most original Canvas that this Canvas was created from using Slice-ing.
//
// The type of the returned value is *Canvas, the type of the return value is a general
// pixel.Picture just so that Canvas implements pixel.Picture interface.
func (c *Canvas) Original() pixel.Picture {
return c.orig
}
// Color returns the color of the pixel over the given position inside the Canvas.
func (c *Canvas) Color(at pixel.Vec) pixel.NRGBA {
if c.orig.dirty {
mainthread.Call(func() {
tex.Begin()
c.orig.pixels = tex.Pixels(0, 0, tex.Width(), tex.Height())
tex.End()
})
c.orig.dirty = false
}
if !c.bounds.Contains(at) {
return pixel.NRGBA{}
}
x, y := int(at.X())-bx, int(at.Y())-by
off := y*bw + x
return pixel.NRGBA{
R: float64(c.orig.pixels[off*4+0]) / 255,
G: float64(c.orig.pixels[off*4+1]) / 255,
B: float64(c.orig.pixels[off*4+2]) / 255,
A: float64(c.orig.pixels[off*4+3]) / 255,
}
}
type canvasTriangles struct {
func (ct *canvasTriangles) draw(tex *glhf.Texture, borders, bounds pixel.Rect) {
// save the current state vars to avoid race condition
mat := ct.dst.mat
col := ct.dst.col
mainthread.CallNonBlock(func() {
ct.dst.s.Begin()
ct.dst.s.SetUniformAttr(canvasBounds, mgl32.Vec4{
float32(ct.dst.bounds.Min.X()),
float32(ct.dst.bounds.Min.Y()),
float32(ct.dst.bounds.W()),
float32(ct.dst.bounds.H()),
ct.dst.s.SetUniformAttr(canvasTransform, mat)
ct.dst.s.SetUniformAttr(canvasColorMask, col)
ct.vs.Begin()
ct.vs.Draw()
ct.vs.End()
ct.dst.s.SetUniformAttr(canvasTexBorders, mgl32.Vec4{
float32(borders.Min.X()),
float32(borders.Min.Y()),
float32(borders.W()),
float32(borders.H()),
ct.dst.s.SetUniformAttr(canvasTexBounds, mgl32.Vec4{
float32(bounds.Min.X()),
float32(bounds.Min.Y()),
float32(bounds.W()),
float32(bounds.H()),
if tex.Smooth() != ct.dst.smooth {
tex.SetSmooth(ct.dst.smooth)
}
ct.vs.Begin()
ct.vs.Draw()
ct.vs.End()
ct.draw(nil, pixel.Rect{}, pixel.Rect{})
}
func (cp *canvasPicture) Bounds() pixel.Rect {
return cp.bounds
}
func (cp *canvasPicture) Slice(r pixel.Rect) pixel.Picture {
sp := new(canvasPicture)
*sp = *cp
sp.bounds = r
return sp
func (cp *canvasPicture) Color(at pixel.Vec) pixel.NRGBA {
if !cp.bounds.Contains(at) {
return pixel.NRGBA{}
}
bx, by, bw, _ := intBounds(cp.borders)
x, y := int(at.X())-bx, int(at.Y())-by
off := y*bw + x
return pixel.NRGBA{
R: float64(cp.pixels[off*4+0]) / 255,
G: float64(cp.pixels[off*4+1]) / 255,
B: float64(cp.pixels[off*4+2]) / 255,
A: float64(cp.pixels[off*4+3]) / 255,
}
}
func (cp *canvasPicture) Draw(t pixel.TargetTriangles) {
ct := t.(*canvasTriangles)
panic(fmt.Errorf("(%T).Draw: TargetTriangles generated by different Canvas", cp))
ct.draw(cp.tex, cp.borders, cp.bounds)
}
type canvasCanvasPicture struct {
src, dst *Canvas
bounds pixel.Rect
orig *canvasCanvasPicture
}
func (ccp *canvasCanvasPicture) Bounds() pixel.Rect {
return ccp.bounds
}
func (ccp *canvasCanvasPicture) Slice(r pixel.Rect) pixel.Picture {
sp := new(canvasCanvasPicture)
*sp = *ccp
sp.bounds = r
return sp
}
func (ccp *canvasCanvasPicture) Original() pixel.Picture {
return ccp.orig
}
func (ccp *canvasCanvasPicture) Color(at pixel.Vec) pixel.NRGBA {
if !ccp.bounds.Contains(at) {
return pixel.NRGBA{}
}
return ccp.src.Color(at)
}
func (ccp *canvasCanvasPicture) Draw(t pixel.TargetTriangles) {
ct := t.(*canvasTriangles)
panic(fmt.Errorf("(%T).Draw: TargetTriangles generated by different Canvas", ccp))
ct.draw(ccp.src.orig.f.Texture(), ccp.src.orig.borders, ccp.bounds)
canvasPosition int = iota
canvasColor
canvasTexture
canvasIntensity
canvasPosition: {Name: "position", Type: glhf.Vec2},
canvasColor: {Name: "color", Type: glhf.Vec4},
canvasTexture: {Name: "texture", Type: glhf.Vec2},
canvasIntensity: {Name: "intensity", Type: glhf.Float},
canvasTransform int = iota
canvasColorMask
canvasTransform: {Name: "transform", Type: glhf.Mat3},
canvasColorMask: {Name: "colorMask", Type: glhf.Vec4},
canvasBounds: {Name: "bounds", Type: glhf.Vec4},
canvasTexBorders: {Name: "texBorders", Type: glhf.Vec4},
canvasTexBounds: {Name: "texBounds", Type: glhf.Vec4},
}
var canvasVertexShader = `
#version 330 core
in vec2 position;
in vec4 color;
in vec2 texture;
out vec4 Color;
out vec2 Texture;
uniform mat3 transform;
vec2 transPos = (transform * vec3(position, 1.0)).xy;
vec2 normPos = (transPos - bounds.xy) / (bounds.zw) * 2 - vec2(1, 1);
Color = color;
Texture = texture;
}
`
var canvasFragmentShader = `
#version 330 core
in vec4 Color;
in vec2 Texture;
uniform sampler2D tex;
void main() {
if (Intensity == 0) {
color = colorMask * Color;
color = vec4(0, 0, 0, 0);
color += (1 - Intensity) * colorMask * Color;
float bx = texBounds.x;
float by = texBounds.y;
float bw = texBounds.z;
float bh = texBounds.w;
if (bx <= Texture.x && Texture.x <= bx + bw && by <= Texture.y && Texture.y <= by + bh) {
vec2 t = (Texture - texBorders.xy) / texBorders.zw;
color += Intensity * colorMask * Color * texture(tex, t);
}