Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
package pixel
import (
"fmt"
"image"
"image/color"
"image/draw"
"math"
)
// TrianglesData specifies a list of Triangles vertices with three common properties: Position,
// Color and Texture.
type TrianglesData []struct {
Position Vec
Color NRGBA
Picture Vec
}
// MakeTrianglesData creates TrianglesData of length len initialized with default property values.
//
// Prefer this function to make(TrianglesData, len), because make zeros them, while this function
// does a correct intialization.
func MakeTrianglesData(len int) TrianglesData {
td := TrianglesData{}
td.SetLen(len)
return td
}
// Len returns the number of vertices in TrianglesData.
func (td *TrianglesData) Len() int {
return len(*td)
}
// SetLen resizes TrianglesData to len, while keeping the original content.
//
// If len is greater than TrianglesData's current length, the new data is filled with default
// values ((0, 0), white, (-1, -1)).
func (td *TrianglesData) SetLen(len int) {
if len > td.Len() {
needAppend := len - td.Len()
for i := 0; i < needAppend; i++ {
*td = append(*td, struct {
Position Vec
Color NRGBA
Picture Vec
}{V(0, 0), NRGBA{1, 1, 1, 1}, V(-1, -1)})
}
}
if len < td.Len() {
*td = (*td)[:len]
}
}
// Slice returns a sub-Triangles of this TrianglesData.
func (td *TrianglesData) Slice(i, j int) Triangles {
s := TrianglesData((*td)[i:j])
return &s
}
func (td *TrianglesData) updateData(t Triangles) {
// fast path optimization
if t, ok := t.(*TrianglesData); ok {
copy(*td, *t)
return
}
// slow path manual copy
if t, ok := t.(TrianglesPosition); ok {
for i := range *td {
(*td)[i].Position = t.Position(i)
}
}
if t, ok := t.(TrianglesColor); ok {
for i := range *td {
(*td)[i].Color = t.Color(i)
}
}
if t, ok := t.(TrianglesPicture); ok {
for i := range *td {
(*td)[i].Picture = t.Picture(i)
}
}
}
// Update copies vertex properties from the supplied Triangles into this TrianglesData.
//
// TrianglesPosition, TrianglesColor and TrianglesTexture are supported.
func (td *TrianglesData) Update(t Triangles) {
if td.Len() != t.Len() {
panic(fmt.Errorf("%T.Update: invalid triangles length", td))
}
td.updateData(t)
}
// Copy returns an exact independent copy of this TrianglesData.
func (td *TrianglesData) Copy() Triangles {
copyTd := TrianglesData{}
copyTd.SetLen(td.Len())
copyTd.Update(td)
return ©Td
}
// Position returns the position property of i-th vertex.
func (td *TrianglesData) Position(i int) Vec {
return (*td)[i].Position
}
// Color returns the color property of i-th vertex.
func (td *TrianglesData) Color(i int) NRGBA {
return (*td)[i].Color
}
// Picture returns the picture property of i-th vertex.
func (td *TrianglesData) Picture(i int) Vec {
return (*td)[i].Picture
}
// PictureData specifies an in-memory rectangular area of NRGBA pixels and implements Picture and
// PictureColor.
//
// Pixels are small rectangles of unit size of form (x, y, x+1, y+1), where x and y are integers.
// PictureData contains and assigns a color to all pixels that are at least partially contained
// within it's Bounds (Rect).
//
// The struct's innards are exposed for convenience, manual modification is at your own risk.
type PictureData struct {
Pix []NRGBA
Stride int
Rect Rect
}
// MakePictureData creates a zero-initialized PictureData covering the given rectangle.
func MakePictureData(rect Rect) PictureData {
w := int(math.Ceil(rect.Pos.X()+rect.Size.X())) - int(math.Floor(rect.Pos.X()))
h := int(math.Ceil(rect.Pos.Y()+rect.Size.Y())) - int(math.Floor(rect.Pos.Y()))
pd := PictureData{
Stride: w,
Rect: rect,
}
pd.Pix = make([]NRGBA, w*h)
return pd
}
func verticalFlip(nrgba *image.NRGBA) {
bounds := nrgba.Bounds()
width := bounds.Dx()
tmpRow := make([]uint8, width*4)
for i, j := 0, bounds.Dy()-1; i < j; i, j = i+1, j-1 {
iRow := nrgba.Pix[i*nrgba.Stride : i*nrgba.Stride+width*4]
jRow := nrgba.Pix[j*nrgba.Stride : j*nrgba.Stride+width*4]
copy(tmpRow, iRow)
copy(iRow, jRow)
copy(jRow, tmpRow)
}
}
// PictureDataFromImage converts an image.Image into PictureData.
//
// The resulting PictureData's Bounds will be the equivalent of the supplied image.Image's Bounds.
func PictureDataFromImage(img image.Image) PictureData {
nrgba := image.NewNRGBA(image.Rect(
0, 0,
img.Bounds().Dx(), img.Bounds().Dy(),
))
draw.Draw(nrgba, nrgba.Bounds(), img, img.Bounds().Min, draw.Src)
verticalFlip(nrgba)
pd := MakePictureData(R(
float64(nrgba.Bounds().Min.X),
float64(nrgba.Bounds().Min.Y),
float64(nrgba.Bounds().Dx()),
float64(nrgba.Bounds().Dy()),
))
for i := range pd.Pix {
pd.Pix[i] = NRGBA{
R: float64(nrgba.Pix[i*4+0]) / 255,
G: float64(nrgba.Pix[i*4+1]) / 255,
B: float64(nrgba.Pix[i*4+2]) / 255,
A: float64(nrgba.Pix[i*4+3]) / 255,
}
}
return pd
}
// PictureDataFromPicture converts an arbitrary Picture into PictureData (the conversion may be
// lossy, because PictureData works with unit-sized pixels).
//
// Bounds are preserved.
func PictureDataFromPicture(pic Picture) PictureData {
if pd, ok := pic.(PictureData); ok {
return pd
}
bounds := pic.Bounds()
pd := MakePictureData(bounds)
if pic, ok := pic.(PictureColor); ok {
for y := math.Floor(bounds.Pos.Y()); y < bounds.Pos.Y()+bounds.Size.Y(); y++ {
for x := math.Floor(bounds.Pos.X()); x < bounds.Pos.X()+bounds.Size.X(); x++ {
// this together with the Floor is a trick to get all of the pixels
at := V(
math.Max(x, bounds.Pos.X()),
math.Max(y, bounds.Pos.Y()),
)
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
pd.SetColor(at, pic.Color(at))
}
}
}
return pd
}
// Image converts PictureData into an image.NRGBA.
//
// The resulting image.NRGBA's Bounds will be equivalent of the PictureData's Bounds.
func (pd PictureData) Image() *image.NRGBA {
bounds := image.Rect(
int(math.Floor(pd.Rect.Pos.X())),
int(math.Floor(pd.Rect.Pos.Y())),
int(math.Ceil(pd.Rect.Pos.X()+pd.Rect.Size.X())),
int(math.Ceil(pd.Rect.Pos.Y()+pd.Rect.Size.Y())),
)
nrgba := image.NewNRGBA(bounds)
i := 0
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
for x := bounds.Min.X; x < bounds.Max.X; x++ {
off := pd.offset(V(float64(x), float64(y)))
nrgba.Pix[i*4+0] = uint8(pd.Pix[off].R * 255)
nrgba.Pix[i*4+1] = uint8(pd.Pix[off].G * 255)
nrgba.Pix[i*4+2] = uint8(pd.Pix[off].B * 255)
nrgba.Pix[i*4+3] = uint8(pd.Pix[off].A * 255)
i++
}
}
verticalFlip(nrgba)
return nrgba
}
func (pd PictureData) offset(at Vec) int {
at -= pd.Rect.Pos
x, y := int(at.X()), int(at.Y())
return y*pd.Stride + x
}
// Bounds returns the bounds of this PictureData.
func (pd PictureData) Bounds() Rect {
return pd.Rect
}
// Slice returns a sub-Picture of this PictureData inside the supplied rectangle.
func (pd PictureData) Slice(r Rect) Picture {
return PictureData{
Pix: pd.Pix[pd.offset(r.Pos):],
Stride: pd.Stride,
Rect: r,
}
}
// Color returns the color located at the given position.
func (pd PictureData) Color(at Vec) NRGBA {
if !pd.Rect.Contains(at) {
return NRGBA{0, 0, 0, 0}
}
return pd.Pix[pd.offset(at)]
}
// SetColor changes the color located at the given position.
func (pd PictureData) SetColor(at Vec, color color.Color) {
if !pd.Rect.Contains(at) {
return
}
pd.Pix[pd.offset(at)] = NRGBAModel.Convert(color).(NRGBA)
}